
Tidig motorisk träning för barn med cerebral pares (CP)
Fråga och sammanfattning
CP är den vanligaste motoriska funktionsnedsättning hos barn i Sverige. Barn med CP har ofta en försenad motorisk utveckling som kräver habiliterande insatser, såsom motorisk och funktionell träning.
Fråga
Vilken sammanställd forskning finns om effekter av tidig motorisk träning för barn (0–3 år) med diagnosticerad CP eller förhöjd risk för CP?
Frågeställare: Fysioterapeut och forskare vid Region Uppsala
Sammanfattning
SBU:s upplysningstjänst har efter litteratursökning, relevansgranskning och bedömning av risk för bias redovisat två systematiska översikter i svaret. Båda översikterna har undersökt effekten av motoriska interventioner på motoriska utfall hos barn med diagnosticerad CP eller med utvecklingsavvikelser som ingav misstanke om hög risk för CP [1] [2].
Baker och medarbetare konstaterade en liten positiv effekt till fördel för aktivitetsbaserad träning jämfört med kontrollgrupp, men att tillförlitligheten till resultaten var mycket låg [1]. För Constraint-Induced Movement Therapy (CIMT) fann man ingen statistiskt säkerställd skillnad mellan interventionsgrupp och kontroll, och även här var tillförlitligheten mycket låg.
Morgan och medarbetare fann motstridiga resultat för studier på motoriska interventioner, och konstaterade att tillförlitligheten hos resultaten var låg [2].
Författarnas slutsatser har inte analyserats utifrån svenska förhållanden. Upplysningstjänsten har även identifierat tre relevanta systematiska översikter som bedömts ha hög risk för bias. För dessa översikter redovisas inte författarnas slutsatser i svaret.
Upplysningstjänsten identifierade inga systematiska översikter med låg eller måttlig risk för bias där effekter av motorisk träning på psykisk hälsa och livskvalitet hos barnen undersökts.
Bakgrund
Varje år får uppskattningsvis drygt 2 av 1 000 barn i Sverige diagnosen cerebral pares (CP), vilket är den vanligaste motoriska funktionsnedsättningen hos barn [3]. CP är ett samlingsnamn för i första hand motoriska funktionsnedsättningar som orsakats av en hjärnskada före två års ålder. Många personer med CP har utöver rörelsehinder andra funktionsnedsättningar, som nedsatt syn, hörsel eller kognitiv förmåga. Hjärnskadan har oftast skett under graviditeten eller i anslutning till förlossning.
Förlamning eller nedsatt muskelstyrka (pares) är centrala symtom vid CP. Det finns olika typer av CP-skador, och det är vanligt att en person har flera olika. De flesta personer med CP har en förhöjd muskelspänning i delar av kroppen (spastisk CP) och en del har svårt att styra musklerna, ofrivilliga rörelser eller förändringar i muskelspänningen (dyskinetisk CP). En liten andel av alla personer med CP har svårt att samordna rörelser, balansproblem och skakiga rörelser (ataktisk CP).
Barn med CP har oftast en försenad motorisk utveckling, som kräver habiliterande insatser. Efter att diagnosen CP har ställts skrivs barnet in i habiliteringen och får kontakt med ett habiliteringsteam, som kan bestå av fysioterapeut, arbetsterapeut och andra yrkesgrupper [4]. Vilken behandling som ges kan bero på typ av CP-skada och symtom. Behandlingen kan exempelvis vara någon form av motorisk träning där barnet tränas i att utföra vardagsaktiviteter för att bli så självständig som möjligt [3].
Frågeställning och avgränsningar
Upplysningstjänsten har tillsammans med frågeställaren formulerat frågan enligt följande PICO1:
- Population: Barn (0–3 år) med diagnostiserad eller risk för cerebral pares (CP).
- Intervention: Motorisk träning (interventioner och utfall kopplade till ätande, andning, dreglande exkluderades, liksom videospel och hästterapi).
- Control: Annan träning, annan motorisk träning eller ingen träning.
- Outcome: Generell eller aktivitetsspecifik motorisk funktion (primärt utfall) samt delaktighet, psykisk hälsa, livskvalitet (sekundära utfall).
1. PICO är en förkortning för patient/population/problem, intervention (insats, behandling)/, comparison/control (jämförelseintervention (insats, behandling)) och outcome (utfallsmått).
Upplysningstjänsten har gjort sökningar (Bilaga 1) i databaserna Medline (Ovid), Scopus och CINAHL, samt i INAHTA2:s databas för HTA3-rapporter. Sökningen är gemensam för en annan fråga som handlar om motorisk träning för barn med DCD och inkluderar därför även sökresultat från den populationen [5]. Vi har även handsökt publikationer på webbsidor för regionala HTA-organisationer och myndigheter.
2. International Network of Agencies for Health Technology Assessment (INAHTA)
3. Utvärdering av hälso- och sjukvårdens (och i SBU:s fall socialtjänstens) metoder (engelska: Health Technology Assessment)
Svaret har begränsats till systematiska översikter.
Upplysningstjänsten inkluderar artiklar publicerade i vetenskapliga tidskrifter samt systematiska översikter och rapporter från myndigheter och HTA-organisationer, som är publicerade på engelska eller ett av de skandinaviska språken.
Bedömning av risk of bias
I en systematisk översikt finns det risk för bias, det vill säga att resultatet blir snedvridet på grund av brister i avgränsning, litteratursökning och hantering av resultatet. Det är därför viktigt att granska metoden i en systematisk översikt. En utredare bedömde risken för bias i översikterna med stöd av SBU:s granskningsmall för att översiktligt bedöma risken för snedvridning eller systematiska fel hos systematiska översikter (Bilaga 5). Granskningsmallen har sex steg och bygger på frågorna i AMSTAR:s granskningsmall [6]. Om översikten inte uppfyllde kraven listade i de fyra första stegen bedömdes den ha hög risk för bias och granskades inte vidare. En systematisk översikt bedöms ha måttlig risk för bias om den uppfyller alla kraven till och med steg 4, och låg om den uppfyller samtliga steg i SBU:s mall (Bilaga 5 och Faktaruta 2).
Systematiska översikter med måttlig eller låg risk för bias beskrivs i text och tabell. De översikter som bedöms ha hög risk för bias presenteras inte i text och tabell eftersom risken för att resultaten är missvisande bedöms vara för hög.
Resultat från sökningen och bedömning av risk för bias
Upplysningstjänstens litteratursökning genererade totalt 988 artiklar efter dubblettkontroll. Ett flödesschema för urvalsprocessen visas i Bilaga 2. Två utredare på SBU läste alla artikelsammanfattningar och bedömde att 136 översikter kunde vara relevanta för frågan. Dessa artiklar lästes i fulltext av en utredare som gjorde en grovgallring och valde ut 21 potentiellt relevanta artiklar. Dessa granskades av två utredare och fem bedömdes vara relevanta. De artiklar som inte var relevanta för frågan exkluderades, se Bilaga 3.
Två utredare på Upplysningstjänsten bedömde risken för bias i fem systematiska översikter som var relevanta för frågan och två av dessa bedömdes ha måttlig eller låg risk för bias [1] [2]. Resultat och slutsatser från dessa översikter redovisas nedan. Av de relevanta översikterna bedömdes tre ha hög risk för bias [7] [8] [9]. Upplysningstjänstens bedömning av risk för bias redovisas i Bilaga 4.
Systematiska översikter
SBU:s upplysningstjänst inkluderade två systematiska översikter med låg eller måttlig risk för bias i svaret (Tabell 1).
Baker och medarbetare publicerade år 2022 en systematisk översikt över effekten av motoriska interventioner på motorisk funktion hos barn under tre år med diagnostiserad CP eller med konstaterat hög risk för CP baserat på utvecklingsavvikelser [1]. För att inkluderas i översikten krävdes det att primärstudien skulle vara en RCT eller kvasi-RCT, samt att minst 50 procent av barnen skulle ha CP i uppföljande tester.
Totalt elva studier inkluderades i översikten där barnen hade spastisk eller dyskinetisk CP. Motoriska interventioner kategoriserades i fyra grupper: aktivitetsbaserad motorisk träning, Constraint-induced Movement Therapy (CIMT) Neurofacilitation of Developmental Reaction (NFDR) samt träning på gåband.
CIMT definierades som intensiv, strukturerad motorisk träning av den mest påverkade armen eller handen samtidigt som användningen av den mindre påverkade armen eller handen begränsas. NFDR handlar om att förbättra motorisk utveckling genom att arbeta med både statisk och dynamisk kroppshållning, muskelton och reflexer. Interventionerna var mellan 28 dagar och 32 månader långa. Kontrollgrupperna i studierna hade fått standardvård eller en annan intervention. Översiktsförfattarna bedömde att risken för bias var hög i en av de inkluderade studierna, måttlig i fem studier och låg i fem studier. De identifierade svagheterna med studierna handlade bland annat om brister i randomiseringen och rapporteringen av resultaten [1].
En metaanalys över fyra (av totalt fem) studier på aktivitetsbaserad motorisk träning (Goals-Activities-Motor-Enrichment (GAME), Learninggames och perceptuell-motorisk intervention) visade på en större effekt av interventionen jämfört med standardvård eller annan intervention (SMD 0,41 (95 % KI, 0.05 till 0.78)). Översiktsförfattarna bedömde att aktivitetsbaserad motorisk träning kan vara mer effektivt än kontroll för att förbättra motorik hos barn med diagnosticerad eller hög risk för CP, men att tillförlitligheten till resultaten var mycket låg. Orsakerna till den låga tillförlitligheten var risk för bias i primärstudierna, samt låg överförbarhet och statistisk precision av resultaten [1].
En metaanalys över fyra studier på CIMT visade att effekten av interventionen på handfunktion inte skiljer sig statistiskt signifikant från kontroll (handträning genom lek eller massage) (SMD 0,59 (9 5% KI, –0,18 till 1,37)). Översiktsförfattarna bedömde att tillförlitligheten till resultaten var mycket låg, på grund av heterogena resultat, samt låg överförbarhet och statistisk precision av resultaten [1].
Författarna gjorde ingen metaanalys över resultaten för interventionerna NFDR eller gåband eftersom endast en primärstudie ingick i respektive kategori.
Morgan och medarbetare publicerade år 2016 en systematisk översikt över effekten av motoriska interventioner på motoriska utfall hos barn under två år med diagnostiserad eller konstaterat hög risk för CP baserat på utvecklingsavvikelser [2]. De utvärderade även effekten av interventionerna på icke-motoriska utfall, såsom kognition och interaktionen mellan förälder och barn.
Totalt 34 studier ingick i översikten, och av dessa bedömdes tio RCT och en kohortstudie vara relevanta för Upplysningstjänstens svar. Två av studierna ingick även i översikten av Baker och medarbetare [1]. Vilken typ av CP-skada barnen hade framgick inte i översikten. Den vanligaste interventionen var neurodevelopmental therapy (NDT), men det fanns även andra interventioner som träning på gåband och tidigt interventionsprogram (GAME). I flera av studierna var interventionen komplex och innehöll utöver motoriska komponenter exempelvis kognitiva delar eller föräldrautbildning. Interventionerna jämfördes mot kontroll, vilket kunde vara standardvård eller en annan intervention. I sex av studierna ingick barn med misstänkt hög risk för CP baserat på utvecklingsavvikelser, varav cirka hälften senare även fick en diagnos, och i dessa studier påbörjades interventionerna innan fyra månaders ålder. I resterande studier ingick barn diagnosticerade med CP, och interventionerna startade tidigast vid 12 månaders ålder, med ett undantag då barnen i studien startade mellan 6 månader och 2 år. Interventionerna varade mellan 6 veckor och 12 månader [2].
På grund av stora metodologiska skillnader mellan studierna, i exempelvis intervention och utfall, gjorde författarna en syntes utan metaanalys. Enligt översiktförfattarna visade fyra av de inkluderade primärstudierna, var för sig, på en statistiskt säkerställd skillnad i motorik mellan intervention (olika former av NDT samt GAME) och kontroll, till fördel för intervention i tre av studierna. Studierna mätte olika motoriska utfall såsom grovmotorik, reflexer och greppförmåga med standardiserade tester (Tabell 1). För resterande studier påvisades ingen signifikant skillnad mellan grupperna [2].
Författarna bedömde att tillförlitligheten hos resultaten var låg på grund av metodologiska brister i de inkluderade studierna. Översiktsförfattarna betonade även att de inkluderade studierna var heterogena, att den statistiska precisionen var låg samt att det fanns flera möjliga störfaktorer (confounders) som kan ha påverkat resultaten. Författarna påpekade också att information om genomförande och hur väl interventionen efterföljts saknades i majoriteten av alla inkluderade studier. SBU har inte gjort någon syntes eller evidensgradering av resultaten. Det är möjligt att översiktsförfattarnas bedömning av de ingående primärstudierna och evidensgradering av resultaten kan avvika från de bedömningar som SBU skulle göra vid framtagandet av en systematisk översikt [2].
Resultaten från översikterna har inte analyserats utifrån svenska förhållanden.
Upplysningstjänsten identifierade inga systematiska översikter med låg eller måttlig risk för bias där effekter av motorisk träning på psykisk hälsa och livskvalitet hos barnen undersökts.
Att underlag saknas eller har mycket låg tillförlitlighet ska inte tolkas som att insatserna saknar effekt. Det betyder däremot att det behövs forskning för att förbättra kunskapsläget.
* Outcomes from the same NFDR-study AIMS = Alberta Infant Motor Scale; BSID – PDI = The Bayley Scales of Infant and Toddler Development – Psychomotor Developmental Index; CAMS = Curriculum and Monitoring System; COPCA = COPing with and CAring for Infants with Special Needs; EIP = early intervention program; FI-uhu = Functional Inventory – Unilateral Hand Use; GAME = Goals – Activity – Motor – Enrichment; GMFM = Gross Motor Function Measure; HAI = Hand Assessment of Infants; IMP = The Infant Motor Profile; NBAS = The Neonatal Behavioral Assessment Scale; NDT = neurodevelopmental therapy; NFDR = Neurofacilitation of Developmental Reaction; PDMS-2 TMQ = Peabody Development Motor Scales – (second edition), The Total Motor Quotient; TIME = Toddler Infant Motor Evaluation |
||
Included studies | Population Intervention Control |
Outcome and Results |
Baker et al, 2022 [1] Effect of Motor Intervention for Infants and Toddlers With Cerebral Palsy: A Systematic Review and Meta-analysis |
||
In total 11 RCT, 363 participants. | Population: Children (0–3 years) diagnosed with or at high risk of CP. Intervention: Motor interventions: task-specific (5 studies), Constraint-Induced Movement Therapy (4 studies), neurofacilitation (1 study), treadmill (1 study) Control intervention: Standard care or another intervention (e.g., bimanual play, infant massage). |
Task-specific motor training vs. control (4 studies, 121 children) Statistically significant difference in motor function in favour of intervention (GMFM: sitting, PDMS-2: TMQ, BSID: motor). SMD 0.41 (95% CI, 0.05 to 0.78) CIMT vs. control (4 studies, 150 children) Statistically non-significant difference in unimanual function (FI-uhu; HAI; BSID-fine motor). SMD 0.59 (95% CI, –0.18 to 1.37). Note: No meta-analyses were performed on neurofacilitation or treadmill. |
Authors' conclusion: ”This review adds that there is very low-quality evidence that task-specific training based on motor learning principles and CIMT may have, respectively, a small and moderate effect on motor function.” |
||
Morgan et al, 2016 [2] Effectiveness of motor interventions in infants with cerebral palsy: a systematic review |
||
In total 34 studies. Relevant studies: 10 RCT and 1 cohort study (level II and level III studies in Results section), with in total 402 participants. |
Population: Children (0–2 years) diagnosed with or at high risk of CP. Intervention: Motor interventions (e.g., neurodevelopmental therapy, early intervention programme, kicking and treadmill). Control intervention: Standard care or another intervention (e.g., NDT). |
Effects of interventions NDT vs. control (5 studies) Statistically non-significant difference in motor function (GMFM-88, Motor Assessment of Infants, TIME and PDMS) (3 studies) Statistically significant difference in motor function in favour of intervention (GMFM: sitting subscale) (1 study) Statistically significant difference in motor function in favour of control (BSID - PDI) (1 study) NFDR resp. GAME vs. control (2 studies) Statistically significant difference in motor function in favour of intervention (GMFM*, PDMS-2 TMQ) CAMS, NFDR, Exercise, COPCA, resp. EIP vs. control (5 studies) Statistically non-significant difference in motor function (BSID - PDI, Primitive reflexes*, AIMS, IMP, NBAS - motor) |
Authors' conclusion: ”Considering the small sample sizes and the heterogeneity identified in intervention approaches, length of interventions, ages of evaluations, and outcome measures in the studies reviewed, recommendations for clinical practice are weak at best.” ”Large RCT or comparative effectiveness study designs with clear replicable descriptions both of experimental and of control interventions are essential to disentangle many of the confounding variables identified in this review.” |
SBU:s upplysningstjänst inkluderade tre systematiska översikter med hög risk för bias [7-9]. Resultat och slutsatser presenteras inte i text och tabell eftersom risken för att resultaten är missvisande bedöms vara för hög.
Vetenskapliga kunskapsluckor
Enligt SBU:s modell innebär en vetenskaplig kunskapslucka att det saknas evidens för vilken sammanvägd effekt en metod eller insats har, det vill säga kunskap från en systematisk översikt (Faktaruta 3).
SBU:s upplysningstjänst har efter litteratursökning identifierat två systematiska översikter med låg eller måttlig risk för bias, som visar på en kunskapslucka då tillförlitligheten till resultaten bedömdes som mycket låg respektive låg av översiktsförfattarna. Översiktsförfattarna betonar vikten av fler och större högkvalitativa studier. Ingen litteratursökning efter primärstudier har gjorts så nya primärstudier kan ha tillkommit efter att översikterna publicerades. För att besvara Upplysningstjänstens fråga behövs en välgjord och ny systematisk översikt som identifierar alla relevanta primärstudier och väger samman resultaten.
Projektgrupp
Detta svar är sammanställt av Stina Cornell Kärnekull (utredare), Emma Palmqvist Wojda (utredare), Sara Fundell (projektadministratör), Irene Edebert (produktsamordnare), Lisa Forsberg (intern sakkunnig), Annika Bring (intern sakkunnig) samt Pernilla Östlund (avdelningschef) vid SBU.
Referenser
- Baker A, Niles N, Kysh L, Sargent B. Effect of Motor Intervention for Infants and Toddlers With Cerebral Palsy: A Systematic Review and Meta-analysis. Pediatr Phys Ther. 2022;34(3):297-307. Available from: https://doi.org/10.1097/PEP.0000000000000914.
- Morgan C, Darrah J, Gordon AM, Harbourne R, Spittle A, Johnson R, et al. Effectiveness of motor interventions in infants with cerebral palsy: a systematic review. Dev Med Child Neurol. 2016;58(9):900-9. Available from: https://doi.org/10.1111/dmcn.13105.
- Tedroff K, Wide K. Regionalt vårdprogram. Cerebral pares hos barn och ungdom. Stockholm: Stockholms läns landsting; 2014. RV 2014:01. [accessed June 9 2023]. Available from: https://kunskapsstodforvardgivare.se/download/18.6746d34717ce9d34f752e0/1636023021037/RVP%20cerebral%20pares%202014.pdf.
- Cerebral pares – CP. 1177. [updated Sep 22 2023; accessed June 8 2023]. Available from: https://www.1177.se/sjukdomar--besvar/hjarna-och-nerver/nerver/cerebral-pares--cp/.
- SBU. Motorisk träning för barn och ungdomar med motorisk koordinationsstörning (DCD). Stockholm: Statens beredning för medicinsk och social utvärdering (SBU); 2023. SBU:s upplysningstjänst.
- Shea BJ, Hamel C, Wells GA, Bouter LM, Kristjansson E, Grimshaw J, et al. AMSTAR is a reliable and valid measurement tool to assess the methodological quality of systematic reviews. J Clin Epidemiol. 2009;62(10):1013-20. Available from: https://doi.org/10.1016/j.jclinepi.2008.10.009.
- Javier FRF, Antonia GC, Julio PL. Efficacy of Early Physiotherapy Intervention in Preterm Infant Motor Development— A Systematic Review—. J Phys Ther Sci. 2012;24(9):933-40. Available from: https://doi.org/10.1589/jpts.24.933.
- Hadders-Algra M, Boxum AG, Hielkema T, Hamer EG. Effect of early intervention in infants at very high risk of cerebral palsy: a systematic review. Dev Med Child Neurol. 2017;59(3):246-58. Available from: https://doi.org/10.1111/dmcn.13331.
- Mailleux L, De Beukelaer N, Carbone MB, Ortibus E. Early interventions in infants with unilateral cerebral palsy: A systematic review and narrative synthesis. Res Dev Disabil. 2021;117:104058. Available from: https://doi.org/10.1016/j.ridd.2021.104058.
Bilaga 1 Dokumentation av sökstrategier
Medline via OvidSP 19 Jan 2023
/ = Term from the MeSH controlled vocabulary; .sh = Term from the MeSH controlled vocabulary; exp= Term from MeSH including terms found below this term in the MeSH hierarchy; .ti,ab = Title or abstract; .tw = Title or abstract; .kf = Keywords; .kw = Keywords, exact; .bt = Book title. NLM Bookshelf.; .pt = Publication type; .ja = Journal abbreviation; .af = All fields; adjn = Adjacent. Proximity operator retrieving adjacent words, adj3 retrieves records with search terms within two terms from each other.; * or $ = Truncation; “ “ = Citation Marks; searches for an exact phrase | ||
Search terms | Items found | |
Population: Cerebral palsy or developmental coordination disorder in children | ||
1. | exp Cerebral Palsy/ | 23 239 |
2. | cerebral pals*.ab,bt,kw,ti. | 26 931 |
3. | exp Hypoxia-Ischemia, Brain/ | 6835 |
4. | ((hypoxic ischemic or neonatal or infant) adj2 encephalopathy).ab,bt,kf,ti. | 5258 |
5. | ((arterial ischemic or arterial ischaemic or neonatal or infant) adj2 stroke).ab,bt,kf,ti. | 1262 |
6. | ((intraventricular or cerebral) adj2 (hemorrhage or haemorrhage)).ab,bt,kf,ti. | 18 366 |
7. | periventricular leukomalacia.ab,bt,kw,ti. | 2328 |
8. | exp Infarction, Middle Cerebral Artery/ | 10 465 |
9. | (middle cerebral artery) adj2 (embolus or infarct* or thrombosis).ab,bt,kf,ti. | 1361 |
10. | Hemiplegia/ | 11 932 |
11. | Cerebellar Ataxia/ | 5092 |
12. | (hemiplegi* or hydrocephal* or ataxi*).ab.bt.kw.ti. | 86 127 |
13. | (spastic* or displegi*).ab.bt.kw.ti. | 29 070 |
14. | quadriplegi*.ab,bt,kw,ti. | 4536 |
15. | Motor Disorders/ | 945 |
16. | Motor Skills Disorders/ | 3185 |
17. | (developmental coordination disorder or developmental co-ordination disorder).ab,bt,kw.ti. | 1417 |
18. | dyspraxi*.ab,bt,kw,ti. | 648 |
19. | ((motor or neuromotor or psychomotor) adj4 (impairment* or dela* or disorder*)).ab,bt,kf,ti. | 29 744 |
20. | or/1-19 | 210 877 |
22. | Pediatrics/ | 57 746 |
22. | exp Child/ | 2 120 348 |
23. | exp Infant/ | 1 237 790 |
24. | Adolescent/ | 2 199 051 |
25. | (child or children or infant* or newborn or neonate* or premature or preterm).ab,bt,kw,ti. | 1 991 029 |
26. | (adolescent* or teen* or youth or young).ab,bt,kw,ti. | 876 971 |
27. | (juvenile or pediatric*).ab,bt,kw,ti. | 452 089 |
28. | or/21-27 | 4 906 286 |
29. | 20 and 28 | 85 842 |
Intervention: | ||
30. | Occupational Therapy/ | 14 622 |
31. | exp Physical Therapy Modalities/ | 175 308 |
32. | Physical Therapists/ | 2972 |
33. | Early Intervention, Educational/ | 3470 |
34. | Physiotherapy.ab,bt,kw,ti. | 24 566 |
35. | occupational therapy.ab,bt,kw,ti. | 13 242 |
36. | exercis*.ab,bt,kw,ti. | 352 373 |
37. | early intervention*.ab,bt,kw,ti. | 22 639 |
38. | rehabilitation.ab.bt.kw.ti. | 198 298 |
39. | ((Motor or neuromotor or neurodevelopmental or cognitive or task specific or sensory or physical or movement) adj4 (training or therapy or treatment)).ab,bt,kf,ti. | 109 018 |
40. | or/30-39 | 757 015 |
Study types: systematic reviews and meta-analysis | ||
41. | ((Systematic Review/ or Meta-Analysis/ or Cochrane Database Syst Rev.ja. or ((systematic adj4 review) or "meta analys*" or metaanalys*).ti,bt,ab.) not (editorial/ or letter/ or case reports/)) | |
Combined sets: | ||
42. | 29 and 40 | 8470 |
43. | 41 and 42 | 422 |
Final result | ||
44. | 422 |
Scopus via scopus.com 19 Jan 2023
TITLE-ABS-KEY = Title, abstract or keywords (including indexed keywords and author keywords); ALL = All fields; W/ n = Within. Proximity operator retrieving terms within n words from each other.; PRE/ n = Precedes by. Proximity operator, the first term in the search must precede the second by n words.; LIMIT-TO (X) = Includes only results of specified type, e.g., publication type or time range.; DOCTYPE = Publication type; “re” = review; “le” = letter; “ed” = editorial; “ch” = book chapter; “cp” = conference proceedings;* = Truncation; “ “ = Citation Marks; searches for an exact phrase | ||
Search terms | Items found | |
Population: Cerebral palsy or developmental coordination disorder in children | ||
1. | TITLE-ABS-KEY ( "cerebral pals*" ) | 46 392 |
2. | TITLE-ABS-KEY ( ( "hypoxic ischemic" OR neonatal OR infant ) W/1 encephalopathy ) | 11 998 |
3. | TITLE-ABS-KEY ( ( "arterial ischemic" OR "arterial ischaemic" OR neonatal ) W/1 stroke ) | 1517 |
4. | TITLE-ABS-KEY ( ( ( intraventricular; OR cerebral ) W/1 ( hemorrhage OR haemorrhage ) ) OR "periventricular leukomalacia" OR hemiplegi* OR hydrocephal* OR ataxi* OR spastic* OR displegi* OR quadriplegi* ) | 265 360 |
5. | TITLE-ABS-KEY ( "middle cerebral artery" W/1 ( embolus OR infarct* OR thrombosis ) ) | 10 544 |
6. | TITLE-ABS-KEY ( "developmental coordination disorder" OR "developmental co ordination disorder" ) | 2581 |
7. | TITLE-ABS-KEY ( ( motor OR neuromotor OR psychomotor ) W/3 ( impairment* OR dela* OR disorder* ) ) | 47 405 |
8. | 1 OR 2 OR […] 7 | 360 275 |
9. | TITLE-ABS-KEY ( child OR children OR infant* OR newborn OR neonate* OR premature OR preterm ) | 4 526 721 |
10. | TITLE-ABS-KEY ( adolescent* OR teen* OR youth OR young ) | 3 995 743 |
11. | TITLE-ABS-KEY ( juvenile OR pediatric* ) | 891 953 |
12. | 9 OR 10 OR 11 | 7 249 336 |
13. | 8 AND 12 | 145 155 |
Intervention: Motor interventions | ||
14. | TITLE-ABS-KEY ( "occupational therapy" OR physiotherapy OR "early intervention" OR exercis* OR rehabilitation ) | 1 281 705 |
15. | TITLE-ABS-KEY ( ( motor OR neuromotor OR neurodevelopmental OR cognitive OR "task specific" OR sensory OR physical OR "constraint induced" OR movement ) W/2 ( training OR therapy OR treatment ) ) | 246 226 |
16. | 14 OR 15 | 1 428 696 |
Study types: systematic reviews and meta-analysis | ||
17. | TITLE-ABS-KEY ( ( systematic W/2 review ) OR "meta analy*" OR metaanaly* ) AND (EXCLUDE (DOCTYPE, “le”) OR EXCLUDE (DOCTYPE, “ed”) OR EXCLUDE (DOCTYPE, “ch”) OR EXCLUDE (DOCTYPE, “cp”)) | |
Combined sets: | ||
18. | 13 AND 16 | 16 549 |
19. | 17 AND 18 | 731 |
Final result | ||
20. | 731 |
CINAHL via EBSCO 19 Jan 2023
TI = Title; AB = Abstract; SU = Keyword, exact or part (including all other fields for indexed and author keywords); MH = Exact subject heading, indexed keywords;TX = All text; PT = Publication type; Nn = Near. Proximity operator retrieving terms within n words from each other.; * = Truncation; “ “ = Citation Marks; searches for an exact phrase | ||
Search terms | Items found | |
Population: | ||
1. | (MH "Hypoxia-Ischemia, Brain, Neonatal") OR (MH "Cerebral Hemorrhage") | 8236 |
2. | TI ( "cerebral pals*" OR "intraventricular hemorrhage" OR "intraventricular haemorrhage" OR "periventricular leukomalacia" OR hemiplegi* OR hydrocephal* OR ataxi* OR spastic* OR displegi* OR quadriplegi* ) OR AB ( "cerebral pals*" OR "intraventricular hemorrhage" OR "intraventricular haemorrhage" OR "periventricular leukomalacia" OR hemiplegi* OR hydrocephal* OR ataxi* OR spastic* OR displegi* OR quadriplegi* ) OR SU ("cerebral pals*" OR "intraventricular hemorrhage" OR "intraventricular haemorrhage" OR "periventricular leukomalacia" OR hemiplegi* OR hydrocephal* OR ataxi* OR spastic* OR displegi* OR quadriplegi* ) | 46 702 |
3. | TI ( (("hypoxic ischemic" OR neonatal OR infant) N1 encephalopathy) OR (("arterial ischemic" OR "arterial ischaemic" OR neonatal OR infant) N1 stroke) OR ("middle cerebral artery" N1 (embolus OR infarct* OR thrombosis)) ) OR AB ( (("hypoxic ischemic" OR neonatal OR infant) N1 encephalopathy) OR (("arterial ischemic" OR "arterial ischaemic" OR neonatal OR infant) N1 stroke) OR ("middle cerebral artery" N1 (embolus OR infarct* OR thrombosis)) ) OR SU ( (("hypoxic ischemic" OR neonatal OR infant) N1 encephalopathy) OR (("arterial ischemic" OR "arterial ischaemic" OR neonatal OR infant) N1 stroke) OR ("middle cerebral artery" N1 (embolus OR infarct* OR thrombosis)) ) | 2740 |
4. | TI ( ( "developmental coordination disorder" OR "developmental co ordination disorder" ) ) OR AB ( ( "developmental coordination disorder" OR "developmental co ordination disorder" ) ) OR SU ( ( "developmental coordination disorder" OR "developmental co ordination disorder" ) ) | 1121 |
5. | TI ( ( ( motor OR neuromotor OR psychomotor ) N3 ( impairment* OR delay OR disorder* ) ) ) OR AB ( ( ( motor OR neuromotor OR psychomotor ) N3 ( impairment* OR delay OR disorder* ) ) ) OR SU ( ( ( motor OR neuromotor OR psychomotor ) N3 ( impairment* OR delay OR disorder* ) ) ) | 10 016 |
6. | 1 OR 2 OR 3 OR 4 OR 5 | 64 107 |
7. | TI ( ( child OR children OR infant* OR newborn OR neonate* OR premature OR preterm OR adolescent* OR teen* OR youth OR young OR juvenile OR pediatric* ) ) OR AB ( ( child OR children OR infant* OR newborn OR neonate* OR premature OR preterm OR adolescent* OR teen* OR youth OR young OR juvenile OR pediatric* ) ) OR SU ( ( child OR children OR infant* OR newborn OR neonate* OR premature OR preterm OR adolescent* OR teen* OR youth OR young OR juvenile OR pediatric* ) ) | 1 443 817 |
8. | 6 AND 7 | 29 633 |
Intervention: | ||
9. | (MH "Occupational Therapy+") OR (MH "Therapeutic Exercise+") | 91 593 |
10. | (MH "Early Childhood Intervention") | 6190 |
11. | TI ( physiotherapy OR "occupational therapy" OR exercis* OR "early intervention*" OR rehabilitation ) OR AB ( physiotherapy OR "occupational therapy" OR exercis* OR "early intervention*" OR rehabilitation ) OR SU ( physiotherapy OR "occupational therapy" OR exercis* OR "early intervention*" OR rehabilitation ) | 456 471 |
12. | TI ( (motor OR neuromotor OR neurodevelopmental OR cognitive OR "task specific" OR sensory OR physical OR movement) N3 (training OR therapy OR treatment) ) OR AB ( (motor OR neuromotor OR neurodevelopmental OR cognitive OR "task specific" OR sensory OR physical OR movement) N3 (training OR therapy OR treatment) ) OR SU ( (motor OR neuromotor OR neurodevelopmental OR cognitive OR "task specific" OR sensory OR physical OR movement) N3 (training OR therapy OR treatment) ) | 114 434 |
13. | 9 OR 10 OR 11 OR 12 | 533 561 |
Study types: systematic reviews and meta-analysis | ||
14. | ((TI((systematic N3 review) OR "meta analys*" OR metaanalys*) OR AB((systematic N3 review) OR "meta analys*" OR metaanalys*) OR SU((systematic N3 review) OR "meta analys*" OR metaanalys*)) OR (PT "Systematic Review" OR PT "meta analysis"))NOT (MH "Case Studies" OR PT "Commentary" OR PT "Editorial" OR PT "Letter") | |
Combined sets: | ||
15. | 8 AND 13 AND 14 | 493 |
Final result | ||
16. | 493 |
Bilaga 2 Flödesschema för urval av artiklar
Bilaga 3 Exkluderade studier
Excluded articles | Reason for exclusion |
Systematic reviews | |
Abbass ME, Ibrahim NM. Effectiveness of action observation therapy on upper extremity function in children with cerebral palsy: systematic review and meta-analysis. Phys Ther Rev. 2021;26(6):428-38. Available from: https://doi.org/10.1080/10833196.2021.1978247. | Wrong population |
Abdelhaleem N, El Wahab MSA, Elshennawy S. Effect of virtual reality on motor coordination in children with cerebral palsy: a systematic review and meta-analysis of randomized controlled trials. Egypt J Med Hum Genet. 2022;23(1). Available from: https://doi.org/10.1186/s43042-022-00258-0. | Wrong population |
Abdelhaleem N, Taher S, Mahmoud M, Hendawy A, Hamed M, Mortada H, et al. Effect of action observation therapy on motor function in children with cerebral palsy: a systematic review of randomized controlled trials with meta-analysis. Clin Rehabil. 2021;35(1):51-63. Available from: https://doi.org/10.1177/0269215520954345. | Wrong population |
Alahmari K, Tedla JS, Sangadala DR, Mukherjee D, Reddy RS, Bairapareddy KC, et al. Effectiveness of Hand-Arm Bimanual Intensive Therapy on Hand Function among Children with Unilateral Spastic Cerebral Palsy: A Meta-Analysis. Eur Neurol. 2020;83(2):131-7. Available from: https://doi.org/10.1159/000507325. | Wrong population |
Alamer A, Melese H, Adugna B. Effectiveness of Action Observation Training on Upper Limb Motor Function in Children with Hemiplegic Cerebral Palsy: A Systematic Review of Randomized Controlled Trials. Pediatric Health Med Ther. 2020;11:335-46. Available from: https://doi.org/10.2147/PHMT.S266720. | Wrong population |
Alrashidi M, Wadey CA, Tomlinson RJ, Buckingham G, Williams CA. The efficacy of virtual reality interventions compared with conventional physiotherapy in improving the upper limb motor function of children with cerebral palsy: a systematic review of randomised controlled trials. Disabil Rehabil. 2023;45(11):1773-83. Available from: https://doi.org/10.1080/09638288.2022.2071484. | Wrong population |
Amirthalingam J, Paidi G, Alshowaikh K, Iroshani Jayarathna A, Salibindla D, Karpinska-Leydier K, et al. Virtual Reality Intervention to Help Improve Motor Function in Patients Undergoing Rehabilitation for Cerebral Palsy, Parkinson's Disease, or Stroke: A Systematic Review of Randomized Controlled Trials. Cureus. 2021;13(7):e16763. Available from: https://doi.org/10.7759/cureus.16763. | Wrong population |
Anttila H, Autti-Ramo I, Suoranta J, Makela M, Malmivaara A. Effectiveness of physical therapy interventions for children with cerebral palsy: a systematic review. BMC Pediatr. 2008;8:14. Available from: https://doi.org/10.1186/1471-2431-8-14. | Wrong population |
Anttila H, Suoranta J, Malmivaara A, Makela M, Autti-Ramo I. Effectiveness of physiotherapy and conductive education interventions in children with cerebral palsy: a focused review. Am J Phys Med Rehabil. 2008;87(6):478-501. Available from: https://doi.org/10.1097/PHM.0b013e318174ebed. | Wrong population |
Araujo PA, Starling JMP, Oliveira VC, Gontijo APB, Mancini MC. Combining balance-training interventions with other active interventions may enhance effects on postural control in children and adolescents with cerebral palsy: a systematic review and meta-analysis. Braz J Phys Ther. 2020;24(4):295-305. Available from: https://doi.org/10.1016/j.bjpt.2019.04.005. | Wrong population |
Armstrong EL, Spencer S, Kentish MJ, Horan SA, Carty CP, Boyd RN. Efficacy of cycling interventions to improve function in children and adolescents with cerebral palsy: a systematic review and meta-analysis. Clin Rehabil. 2019;33(7):1113-29. Available from: https://doi.org/10.1177/0269215519837582. | Wrong population |
Arpino C, Vescio MF, De Luca A, Curatolo P. Efficacy of intensive versus nonintensive physiotherapy in children with cerebral palsy: a meta-analysis. Int J Rehabil Res. 2010;33(2):165-71. Available from: https://doi.org/10.1097/MRR.0b013e328332f617. | Wrong population |
Azadi H, Hosseini SA, Akbarfahimi N. Effect of task oriented training on functional mobility in children with cerebral Palsy: A systematic review and meta-analysis. Journal of Mazandaran University of Medical Sciences. 2020;30(190). | Wrong language |
Bania T, Chiu HC, Billis E. Activity training on the ground in children with cerebral palsy: Systematic review and meta-analysis. Physiother Theory Pract. 2019;35(9):810-21. Available from: https://doi.org/10.1080/09593985.2018.1460647. | Wrong population |
Banzato A, Cerchiari A, Pezzola S, Ranucci M, Scarfo E, Berardi A, et al. Evaluation of the Effectiveness of Functional Chewing Training Compared with Standard Treatment in a Population of Children with Cerebral Palsy: A Systematic Review of Randomized Controlled Trials. Children (Basel). 2022;9(12). Available from: https://doi.org/10.3390/children9121876. | Wrong intervention |
Beckers L, Geijen MME, Kleijnen J, E AAR, M LAPS, R JEMS, et al. Feasibility and effectiveness of home-based therapy programmes for children with cerebral palsy: a systematic review. BMJ Open. 2020;10(10):e035454. Available from: https://doi.org/10.1136/bmjopen-2019-035454. | Wrong population |
Blauw-Hospers CH, Hadders-Algra M. A systematic review of the effects of early intervention on motor development. Dev Med Child Neurol. 2005;47(6):421-32. Available from: https://doi.org/10.1017/s0012162205000824. | No separate reporting of relevant results |
Booth ATC, Buizer AI, Meyns P, Oude Lansink ILB, Steenbrink F, van der Krogt MM. The efficacy of functional gait training in children and young adults with cerebral palsy: a systematic review and meta-analysis. Dev Med Child Neurol. 2018;60(9):866-83. Available from: https://doi.org/10.1111/dmcn.13708. | Wrong population |
Boyd RN, Morris ME, Graham HK. Management of upper limb dysfunction in children with cerebral palsy: a systematic review. Eur J Neurol. 2001;8 Suppl 5:150-66. Available from: https://doi.org/10.1046/j.1468-1331.2001.00048.x. | Wrong population |
Cabezas-López M, Bernabéu-Brotóns E. The effects of Bobath therapy on children with cerebral palsy: a systematic review. Int J Ther Rehabil. 2022;29(7):1-11. Available from: https://doi.org/10.12968/ijtr.2021.0089. | Wrong population |
Cameron KL, Albesher RA, McGinley JL, Allison K, Cheong JLY, Spittle AJ. Movement-based interventions for preschool-age children with, or at risk of, motor impairment: a systematic review. Dev Med Child Neurol. 2020;62(3):290-6. Available from: https://doi.org/10.1111/dmcn.14394. | Wrong population |
Case-Smith J, Frolek Clark GJ, Schlabach TL. Systematic review of interventions used in occupational therapy to promote motor performance for children ages birth-5 years. Am J Occup Ther. 2013;67(4):413-24. Available from: https://doi.org/10.5014/ajot.2013.005959. | No separate reporting of relevant results |
Chen Y, Fanchiang HD, Howard A. Effectiveness of Virtual Reality in Children With Cerebral Palsy: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Phys Ther. 2018;98(1):63-77. Available from: https://doi.org/10.1093/ptj/pzx107. | Wrong population |
Chen YP, Howard AM. Effects of robotic therapy on upper-extremity function in children with cerebral palsy: A systematic review. Dev Neurorehabil. 2016;19(1):64-71. Available from: https://doi.org/10.3109/17518423.2014.899648. | Wrong population |
Chen YP, Lee SY, Howard AM. Effect of virtual reality on upper extremity function in children with cerebral palsy: a meta-analysis. Pediatr Phys Ther. 2014;26(3):289-300. Available from: https://doi.org/10.1097/PEP.0000000000000046. | Wrong population |
Chen YP, Pope S, Tyler D, Warren GL. Effectiveness of constraint-induced movement therapy on upper-extremity function in children with cerebral palsy: a systematic review and meta-analysis of randomized controlled trials. Clin Rehabil. 2014;28(10):939-53. Available from: https://doi.org/10.1177/0269215514544982. | Wrong population |
Chiu H, Ada, L. Effect of constraint-induced movement therapy on activity and participation in children with hemiplegic cerebral palsy: a systematic review with meta-analysis. Dev Med Child Neurol. 2015;57:3-4. Available from: https://doi.org/10.1111/dmcn.3_12887. | Wrong publication type |
Chiu HC, Ada L. Constraint-induced movement therapy improves upper limb activity and participation in hemiplegic cerebral palsy: a systematic review. J Physiother. 2016;62(3):130-7. Available from: https://doi.org/10.1016/j.jphys.2016.05.013. | Wrong population |
Collado-Garrido L, Paras-Bravo P, Calvo-Martin P, Santibanez-Marguello M. Impact of Resistance Therapy on Motor Function in Children with Cerebral Palsy: A Systematic Review and Meta-Analysis. Int J Environ Res Public Health. 2019;16(22). Available from: https://doi.org/10.3390/ijerph16224513. | Wrong population |
Cope S, Mohn-Johnsen S. The effects of dosage time and frequency on motor outcomes in children with cerebral palsy: A systematic review. Dev Neurorehabil. 2017;20(6):376-87. Available from: https://doi.org/10.1080/17518423.2017.1282053. | Wrong population |
Corsi C, Santos MM, Moreira RFC, Dos Santos AN, de Campos AC, Galli M, et al. Effect of physical therapy interventions on spatiotemporal gait parameters in children with cerebral palsy: a systematic review. Disabil Rehabil. 2021;43(11):1507-16. Available from: https://doi.org/10.1080/09638288.2019.1671500. | Wrong population |
Cortes-Perez I, Gonzalez-Gonzalez N, Peinado-Rubia AB, Nieto-Escamez FA, Obrero-Gaitan E, Garcia-Lopez H. Efficacy of Robot-Assisted Gait Therapy Compared to Conventional Therapy or Treadmill Training in Children with Cerebral Palsy: A Systematic Review with Meta-Analysis. Sensors (Basel). 2022;22(24). Available from: https://doi.org/10.3390/s22249910. | Wrong population |
Damiano DL, DeJong SL. A systematic review of the effectiveness of treadmill training and body weight support in pediatric rehabilitation. J Neurol Phys Ther. 2009;33(1):27-44. Available from: https://doi.org/10.1097/NPT.0b013e31819800e2. | Wrong population |
Damiano DL, Longo E. Early intervention evidence for infants with or at risk for cerebral palsy: an overview of systematic reviews. Dev Med Child Neurol. 2021;63(7):771-84. Available from: https://doi.org/10.1111/dmcn.14855. | Wrong publication type |
Das SP, Ganesh GS. Evidence-based Approach to Physical Therapy in Cerebral Palsy. Indian J Orthop. 2019;53(1):20-34. Available from: https://doi.org/10.4103/ortho.IJOrtho_241_17. | Wrong population |
de Tillier K, Bracha J, Sobierajskarek A, Mański Ł. Application of virtual reality and video games in pediatric physiotherapy. Systematic review. Fizjoterapia Polska. 2021;21(3). | Wrong population |
Demont A, Gedda M, Lager C, de Lattre C, Gary Y, Keroulle E, et al. Evidence-Based, Implementable Motor Rehabilitation Guidelines for Individuals With Cerebral Palsy. Neurology. 2022;99(7):283-97. Available from: https://doi.org/10.1212/WNL.0000000000200936. | Wrong population |
Dewar R, Love S, Johnston LM. Exercise interventions improve postural control in children with cerebral palsy: a systematic review. Dev Med Child Neurol. 2015;57(6):504-20. Available from: https://doi.org/10.1111/dmcn.12660. | Wrong population |
Dodd KJ, Taylor NF, Damiano DL. A systematic review of the effectiveness of strength-training programs for people with cerebral palsy. Arch Phys Med Rehabil. 2002;83(8):1157-64. Available from: https://doi.org/10.1053/apmr.2002.34286. | Wrong population |
Dong VA, Tung IH, Siu HW, Fong KN. Studies comparing the efficacy of constraint-induced movement therapy and bimanual training in children with unilateral cerebral palsy: a systematic review. Dev Neurorehabil. 2013;16(2):133-43. Available from: https://doi.org/10.3109/17518423.2012.702136. | Wrong population |
Drumm M, Fabiano J, Lee E, Jezequel J, Rao AK, Yoon L. Effects of Power Training on Gait, Power, and Function in Children with Cerebral Palsy. Phys Occup Ther Pediatr. 2022;42(3):227-41. Available from: https://doi.org/10.1080/01942638.2021.1995098. | Wrong population |
Dumuids-Vernet MV, Provasi J, Anderson DI, Barbu-Roth M. Effects of Early Motor Interventions on Gross Motor and Locomotor Development for Infants at-Risk of Motor Delay: A Systematic Review. Front Pediatr. 2022;10:877345. Available from: https://doi.org/10.3389/fped.2022.877345. | No separate reporting of relevant studies |
Eldridge F, Lavin N. How effective is stretching in maintaining range of movement for children with cerebral palsy? A critical review. Int J Ther Rehabil. 2016;23(8):386-95. Available from: https://doi.org/10.12968/ijtr.2016.23.8.386. | Wrong population |
Elnahhas AM, Elshennawy S, Aly MG. Effects of backward gait training on balance, gross motor function, and gait in children with cerebral palsy: a systematic review. Clin Rehabil. 2019;33(1):3-12. Available from: https://doi.org/10.1177/0269215518790053. | Wrong population |
Fahr A, Keller JW, van Hedel HJA. A Systematic Review of Training Methods That May Improve Selective Voluntary Motor Control in Children With Spastic Cerebral Palsy. Front Neurol. 2020;11:572038. Available from: https://doi.org/10.3389/fneur.2020.572038. | Wrong population |
Fandim JV, Saragiotto BT, Porfirio GJM, Santana RF. Effectiveness of virtual reality in children and young adults with cerebral palsy: a systematic review of randomized controlled trial. Braz J Phys Ther. 2021;25(4):369-86. Available from: https://doi.org/10.1016/j.bjpt.2020.11.003. | Wrong population |
Franki I, Desloovere K, De Cat J, Feys H, Molenaers G, Calders P, et al. The evidence-base for basic physical therapy techniques targeting lower limb function in children with cerebral palsy: a systematic review using the International Classification of Functioning, Disability and Health as a conceptual framework. J Rehabil Med. 2012;44(5):385-95. Available from: https://doi.org/10.2340/16501977-0983. | Wrong population |
Franki I, Desloovere K, De Cat J, Feys H, Molenaers G, Calders P, et al. The evidence-base for conceptual approaches and additional therapies targeting lower limb function in children with cerebral palsy: a systematic review using the ICF as a framework. J Rehabil Med. 2012;44(5):396-405. Available from: https://doi.org/10.2340/16501977-0984. | Wrong population |
Getz M, Hutzler Y, Vermeer A. Effects of aquatic interventions in children with neuromotor impairments: a systematic review of the literature. Clin Rehabil. 2006;20(11):927-36. Available from: https://doi.org/10.1177/0269215506070693. | Wrong population |
Ghai S, Ghai I. Virtual Reality Enhances Gait in Cerebral Palsy: A Training Dose-Response Meta-Analysis. Front Neurol. 2019;10:236. Available from: https://doi.org/10.3389/fneur.2019.00236. | Wrong population |
Guerzoni VPD, Barbosa AP, Borges ACC, Chagas PSdC, Gontijo APB, Eterovick F, et al. Análise das intervenções de terapia ocupacional no desempenho das atividades de vida diária em crianças com paralisia cerebral: uma revisão sistemática da literatura. Revista Brasileira de Saúde Materno Infantil. 2008;8(1):17-25. Available from: https://doi.org/10.1590/s1519-38292008000100003. | Wrong language |
Han YG, Yun CK. Effectiveness of treadmill training on gait function in children with cerebral palsy: meta-analysis. J Exerc Rehabil. 2020;16(1):10-9. Available from: https://doi.org/10.12965/jer.1938748.374. | Wrong population |
Harris SR, Roxborough L. Efficacy and effectiveness of physical therapy in enhancing postural control in children with cerebral palsy. Neural Plast. 2005;12(2-3):229-43; discussion 63-72. Available from: https://doi.org/10.1155/NP.2005.229. | Wrong population |
Hoare BJ, Wallen MA, Thorley MN, Jackman ML, Carey LM, Imms C. Constraint-induced movement therapy in children with unilateral cerebral palsy. Cochrane Database of Systematic Reviews. 2019;4(4):CD004149. Available from: https://dx.doi.org/10.1002/14651858.CD004149.pub3 | Wrong population |
Hoare B, Imms C, Carey L, Wasiak J. Constraint-induced movement therapy in the treatment of the upper limb in children with hemiplegic cerebral palsy: a Cochrane systematic review. Clin Rehabil. 2007;21(8):675-85. Available from: https://doi.org/10.1177/0269215507080783. | Wrong population |
Hoyme D. Body weight supported treadmill training versus gait trainer in young children with cerebral palsy. Body Weight Supported Treadmill Training Versus Gait Trainer in Young Children with Cerebral Palsy. 2016. | Wrong publication type |
Hsu CW, Kang YN, Tseng SH. Effects of Therapeutic Exercise Intensity on Cerebral Palsy Outcomes: A Systematic Review With Meta-Regression of Randomized Clinical Trials. Front Neurol. 2019;10:657. Available from: https://doi.org/10.3389/fneur.2019.00657. | Wrong population |
Huang HH, Fetters L, Hale J, McBride A. Bound for success: a systematic review of constraint-induced movement therapy in children with cerebral palsy supports improved arm and hand use. Phys Ther. 2009;89(11):1126-41. Available from: https://doi.org/10.2522/ptj.20080111. | Wrong population |
Hughes AJ, Redsell SA, Glazebrook C. Motor Development Interventions for Preterm Infants: A Systematic Review and Meta-analysis. Pediatrics. 2016;138(4). Available from: https://doi.org/10.1542/peds.2016-0147. | No separate reporting of relevant studies |
Ilhan E, Johnston LM. Appraisal of Clinical Practice Guideline: Early intervention for children aged 0 to 2 years with or at high risk of cerebral palsy: International clinical practice guideline based on systematic reviews. J Physiother. 2021;67(4):314. Available from: https://doi.org/10.1016/j.jphys.2021.08.011. | Wrong publication type |
Inamdar K, Molinini RM, Panibatla ST, Chow JC, Dusing SC. Physical therapy interventions to improve sitting ability in children with or at-risk for cerebral palsy: a systematic review and meta-analysis. Dev Med Child Neurol. 2021;63(4):396-406. Available from: https://doi.org/10.1111/dmcn.14772. | Wrong population |
Jackman M, Lannin N, Galea C, Sakzewski L, Miller L, Novak I. What is the threshold dose of upper limb training for children with cerebral palsy to improve function? A systematic review. Aust Occup Ther J. 2020;67(3):269-80. Available from: https://doi.org/10.1111/1440-1630.12666. | Wrong population |
Jackman M, Sakzewski L, Morgan C, Boyd RN, Brennan SE, Langdon K, et al. Interventions to improve physical function for children and young people with cerebral palsy: international clinical practice guideline. Dev Med Child Neurol. 2022;64(5):536-49. Available from: https://doi.org/10.1111/dmcn.15055. | Wrong population |
Jackman M, Sakzewski L, Morgan C, Boyd RN, Brennan SE, Langdon K, et al. Interventions to improve physical function for children and young people with cerebral palsy: international clinical practice guideline. Dev Med Child Neurol. 2022;64(5):536-49. Available from: https://doi.org/10.1111/dmcn.15055. | Wrong population |
orgić B, Dimitrijević L, Lambeck J, Aleksandrović M, Okičić T, Madić D. Effects of aquatic programs in children and adolescents with cerebral palsy: Systematic review. Sport Science. 2012;5(2). | Wrong population |
Kara OK, Gursen C, Cetin SY, Tascioglu EN, Muftuoglu S, Damiano DL. The effects of power exercises on body structure and function, activity and participation in children with cerebral palsy: an ICF-based systematic review. Disabil Rehabil. 2022:1-14. Available from: https://doi.org/10.1080/09638288.2022.2138575. | Wrong population |
Kavaliauskaitė I, Petrulytė J, Budrienė L, Raistenskis J. Impact of Rehabilitation Interventions on Walking Endurance in Children with Cerebral Palsy. A Systematic Literature Review. Reabilitacijos mokslai: slauga, kineziterapija, ergoterapija. 2022;1(26):21-39. Available from: https://doi.org/10.33607/rmske.v1i26.1182. | Wrong language |
Keawutan P, Bell K, Davies PS, Boyd RN. Systematic review of the relationship between habitual physical activity and motor capacity in children with cerebral palsy. Res Dev Disabil. 2014;35(6):1301-9. Available from: https://doi.org/10.1016/j.ridd.2014.03.028. | Wrong population |
Klaewkasikum K, Patathong T, Woratanarat P, Woratanarat T, Thadanipon K, Rattanasiri S, et al. Efficacy of conservative treatment for spastic cerebral palsy children with equinus gait: a systematic review and meta-analysis. J Orthop Surg Res. 2022;17(1):411. Available from: https://doi.org/10.1186/s13018-022-03301-3. | Wrong population |
Klepper SE, Clayton Krasinski D, Gilb MC, Khalil N. Comparing Unimanual and Bimanual Training in Upper Extremity Function in Children With Unilateral Cerebral Palsy. Pediatr Phys Ther. 2017;29(4):288-306. Available from: https://doi.org/10.1097/PEP.0000000000000438. | Wrong population |
Lefmann S, Russo R, Hillier S. The effectiveness of robotic-assisted gait training for paediatric gait disorders: systematic review. J Neuroeng Rehabil. 2017;14(1):1. Available from: https://doi.org/10.1186/s12984-016-0214-x. | Wrong population |
Liang X, Tan Z, Yun G, Cao J, Wang J, Liu Q, et al. Effectiveness of exercise interventions for children with cerebral palsy: A systematic review and meta-analysis of randomized controlled trials. J Rehabil Med. 2021;53(4):jrm00176. Available from: https://doi.org/10.2340/16501977-2772. | Wrong population |
Liu C, Wang X, Chen R, Zhang J. The Effects of Virtual Reality Training on Balance, Gross Motor Function, and Daily Living Ability in Children With Cerebral Palsy: Systematic Review and Meta-analysis. JMIR Serious Games. 2022;10(4):e38972. Available from: https://doi.org/10.2196/38972. | Wrong population |
Liu W, Hu Y, Li J, Chang J. Effect of Virtual Reality on Balance Function in Children With Cerebral Palsy: A Systematic Review and Meta-analysis. Front Public Health. 2022;10:865474. Available from: https://doi.org/10.3389/fpubh.2022.865474. | Wrong population |
Llamas-Ramos R, Sanchez-Gonzalez JL, Llamas-Ramos I. Robotic Systems for the Physiotherapy Treatment of Children with Cerebral Palsy: A Systematic Review. Int J Environ Res Public Health. 2022;19(9). Available from: https://doi.org/10.3390/ijerph19095116. | Wrong population |
Lopes JBP, Duarte NAC, Lazzari RD, Oliveira CS. Virtual reality in the rehabilitation process for individuals with cerebral palsy and Down syndrome: A systematic review. J Bodyw Mov Ther. 2020;24(4):479-83. Available from: https://doi.org/10.1016/j.jbmt.2018.06.006. | Wrong population |
Lopez-Ortiz C, Gaebler-Spira DJ, McKeeman SN, McNish RN, Green D. Dance and rehabilitation in cerebral palsy: a systematic search and review. Dev Med Child Neurol. 2019;61(4):393-8. Available from: https://doi.org/10.1111/dmcn.14064. | Wrong population |
Lucas BR, Elliott EJ, Coggan S, Pinto RZ, Jirikowic T, McCoy SW, et al. Interventions to improve gross motor performance in children with neurodevelopmental disorders: a meta-analysis. BMC Pediatr. 2016;16(1):193. Available from: https://doi.org/10.1186/s12887-016-0731-6. | Wrong population |
Merino-Andres J, Garcia de Mateos-Lopez A, Damiano DL, Sanchez-Sierra A. Effect of muscle strength training in children and adolescents with spastic cerebral palsy: A systematic review and meta-analysis. Clin Rehabil. 2022;36(1):4-14. Available from: https://doi.org/10.1177/02692155211040199. | Wrong population |
Moreau NG, Bodkin AW, Bjornson K, Hobbs A, Soileau M, Lahasky K. Effectiveness of Rehabilitation Interventions to Improve Gait Speed in Children With Cerebral Palsy: Systematic Review and Meta-analysis. Phys Ther. 2016;96(12):1938-54. Available from: https://doi.org/10.2522/ptj.20150401. | Wrong population |
Morgan C, Fetters L, Adde L, Badawi N, Bancale A, Boyd RN, et al. Early Intervention for Children Aged 0 to 2 Years With or at High Risk of Cerebral Palsy: International Clinical Practice Guideline Based on Systematic Reviews. JAMA Pediatr. 2021;175(8):846-58. Available from: https://doi.org/10.1001/jamapediatrics.2021.0878. | Wrong publication type |
Mujawar MM. A Systematic Review of the Effects of Aquatic Therapy on Motor Functions in Children with Cerebral Palsy. Reabilitacijos mokslai: slauga, kineziterapija, ergoterapija. 2022;2(27):51-67. Available from: https://doi.org/10.33607/rmske.v2i27.1262. | Wrong population |
Mutlu A, Krosschell K, Spira DG. Treadmill training with partial body-weight support in children with cerebral palsy: a systematic review. Dev Med Child Neurol. 2009;51(4):268-75. Available from: https://doi.org/10.1111/j.1469-8749.2008.03221.x. | Wrong population |
Nascimento LR, Glória AE, Habib ES. Effects of constraint-induced movement therapy as a rehabilitation strategy for the affected upper limb of children with hemiparesis: systematic review of the literature. Braz J Phys Ther. 2009;13(2):97-102. Available from: https://doi.org/10.1590/s1413-35552009005000022. | Wrong population |
Olmos-Gomez R, Gomez-Conesa A, Calvo-Munoz I, Lopez-Lopez JA. Effects of Robotic-Assisted Gait Training in Children and Adolescents with Cerebral Palsy: A Network Meta-Analysis. J Clin Med. 2021;10(21). Available from: https://doi.org/10.3390/jcm10214908. | Wrong population |
Ouyang RG, Yang CN, Qu YL, Koduri MP, Chien CW. Effectiveness of hand-arm bimanual intensive training on upper extremity function in children with cerebral palsy: A systematic review. Eur J Paediatr Neurol. 2020;25:17-28. Available from: https://doi.org/10.1016/j.ejpn.2019.12.017. | Wrong population |
Paleg G, Romness M, Livingstone R. Interventions to improve sensory and motor outcomes for young children with central hypotonia: A systematic review. J Pediatr Rehabil Med. 2018;11(1):57-70. Available from: https://doi.org/10.3233/PRM-170507. | Wrong population |
Park EJ, Baek SH, Park S. Systematic review of the effects of mirror therapy in children with cerebral palsy. J Phys Ther Sci. 2016;28(11):3227-31. Available from: https://doi.org/10.1589/jpts.28.3227. | Wrong population |
Park EY, Kim WH. Meta-analysis of the effect of strengthening interventions in individuals with cerebral palsy. Res Dev Disabil. 2014;35(2):239-49. Available from: https://doi.org/10.1016/j.ridd.2013.10.021. | Wrong population |
Park HY, Maitra K, Achon J, Loyola E, Rincon M. Effects of early intervention on mental or neuromusculoskeletal and movement-related functions in children born low birthweight or preterm: a meta-analysis. Am J Occup Ther. 2014;68(3):268-76. Available from: https://doi.org/10.5014/ajot.2014.010371. | Wrong population |
Pin T, Dyke P, Chan M. The effectiveness of passive stretching in children with cerebral palsy. Dev Med Child Neurol. 2006;48(10):855-62. Available from: https://doi.org/10.1017/S0012162206001836. | Wrong population |
Pin TW. Effectiveness of static weight-bearing exercises in children with cerebral palsy. Pediatr Phys Ther. 2007;19(1):62-73. Available from: https://doi.org/10.1097/PEP.0b013e3180302111. | Wrong population |
Plasschaert VFP, Vriezekolk JE, Aarts PBM, Geurts ACH, Van den Ende CHM. Interventions to improve upper limb function for children with bilateral cerebral palsy: a systematic review. Dev Med Child Neurol. 2019;61(8):899-907. Available from: https://doi.org/10.1111/dmcn.14141. | Wrong population |
Rathinam C, Mohan V, Peirson J, Skinner J, Nethaji KS, Kuhn I. Effectiveness of virtual reality in the treatment of hand function in children with cerebral palsy: A systematic review. J Hand Ther. 2019;32(4):426-34 e1. Available from: https://doi.org/10.1016/j.jht.2018.01.006. | Wrong population |
Ravi DK, Kumar N, Singhi P. Effectiveness of virtual reality rehabilitation for children and adolescents with cerebral palsy: an updated evidence-based systematic review. Physiotherapy. 2017;103(3):245-58. Available from: https://doi.org/10.1016/j.physio.2016.08.004. | Wrong population |
Reedman S, Boyd RN, Sakzewski L. The efficacy of interventions to increase physical activity participation of children with cerebral palsy: a systematic review and meta-analysis. Dev Med Child Neurol. 2017;59(10):1011-8. Available from: https://doi.org/10.1111/dmcn.13413. | Wrong population |
Ren Z, Wu J. The Effect of Virtual Reality Games on the Gross Motor Skills of Children with Cerebral Palsy: A Meta-Analysis of Randomized Controlled Trials. Int J Environ Res Public Health. 2019;16(20). Available from: https://doi.org/10.3390/ijerph16203885. | Wrong population |
Riethmuller AM, Jones R, Okely AD. Efficacy of interventions to improve motor development in young children: a systematic review. Pediatrics. 2009;124(4):e782-92. Available from: https://doi.org/10.1542/peds.2009-0333. | Wrong population |
Rogers A, Furler BL, Brinks S, Darrah J. A systematic review of the effectiveness of aerobic exercise interventions for children with cerebral palsy: an AACPDM evidence report. Dev Med Child Neurol. 2008;50(11):808-14. Available from: https://doi.org/10.1111/j.1469-8749.2008.03134.x. | Wrong population |
Roostaei M, Raji P, Morone G, Razi B, Khademi-Kalantari K. The effect of dual-task conditions on gait and balance performance in children with cerebral palsy: A systematic review and meta-analysis of observational studies. J Bodyw Mov Ther. 2021;26:448-62. Available from: https://doi.org/10.1016/j.jbmt.2020.12.011. | Wrong population |
Sakzewski L, Ziviani J, Boyd RN. Efficacy of upper limb therapies for unilateral cerebral palsy: a meta-analysis. Pediatrics. 2014;133(1):e175-204. Available from: https://doi.org/10.1542/peds.2013-0675. | Wrong population |
Schoenmaker J, Houdijk H, Steenbergen B, Reinders-Messelink HA, Schoemaker MM. Effectiveness of different extrinsic feedback forms on motor learning in children with cerebral palsy: a systematic review. Disabil Rehabil. 2023;45(8):1271-84. Available from: https://doi.org/10.1080/09638288.2022.2060333. | Wrong population |
Scianni A, Butler JM, Ada L, Teixeira-Salmela LF. Muscle strengthening is not effective in children and adolescents with cerebral palsy: a systematic review. Aust J Physiother. 2009;55(2):81-7. Available from: https://doi.org/10.1016/s0004-9514(09)70037-6. | Wrong population |
Seson A. Traditional core stabilization therapy versus intensive therapy for toddlers with cerebral palsy. Traditional Core Stabilization Therapy Versus Intensive Therapy for Toddlers With Cerebral Palsy. 2016. | Wrong publication type |
Smith BA, Bompiani E. Using a treadmill intervention to promote the onset of independent walking in infants with or at risk for neuromotor delay. Phys Ther. 2013;93(11):1441-6. Available from: https://doi.org/10.2522/ptj.20120476. | Wrong population |
Snider L, Majnemer A, Darsaklis V. Virtual reality as a therapeutic modality for children with cerebral palsy. Dev Neurorehabil. 2010;13(2):120-8. Available from: https://doi.org/10.3109/17518420903357753. | Wrong population |
Spittle A, Orton J, Anderson PJ, Boyd R, Doyle LW. Early developmental intervention programmes provided post hospital discharge to prevent motor and cognitive impairment in preterm infants. Cochrane Database Syst Rev. 2015;2015(11):CD005495. Available from: https://doi.org/10.1002/14651858.CD005495.pub4. | No separate reporting of relevant studies |
Steultjens EM, Dekker J, Bouter LM, van de Nes JC, Lambregts BL, van den Ende CH. Occupational therapy for children with cerebral palsy: a systematic review. Clin Rehabil. 2004;18(1):1-14. Available from: https://doi.org/10.1191/0269215504cr697oa. | Wrong population |
Tanner K, Schmidt E, Martin K, Bassi M. Interventions Within the Scope of Occupational Therapy Practice to Improve Motor Performance for Children Ages 0-5 Years: A Systematic Review. Am J Occup Ther. 2020;74(2):7402180060p1-p40. Available from: https://doi.org/10.5014/ajot.2020.039644. | No separate reporting of relevant studies |
Tatla SK, Sauve K, Jarus T, Virji-Babul N, Holsti L. The effects of motivating interventions on rehabilitation outcomes in children and youth with acquired brain injuries: a systematic review. Brain Inj. 2014;28(8):1022-35. Available from: https://doi.org/10.3109/02699052.2014.890747. | Wrong population |
Tatla SK, Sauve K, Virji-Babul N, Holsti L, Butler C, Van Der Loos HF. Evidence for outcomes of motivational rehabilitation interventions for children and adolescents with cerebral palsy: an American Academy for Cerebral Palsy and Developmental Medicine systematic review. Dev Med Child Neurol. 2013;55(7):593-601. Available from: https://doi.org/10.1111/dmcn.12147. | Wrong population |
Te Velde A, Morgan C, Finch-Edmondson M, McNamara L, McNamara M, Paton MCB, et al. Neurodevelopmental Therapy for Cerebral Palsy: A Meta-analysis. Pediatrics. 2022;149(6). Available from: https://doi.org/10.1542/peds.2021-055061. | No separate reporting of relevant studies |
Tervahauta MH, Girolami GL, Oberg GK. Efficacy of constraint-induced movement therapy compared with bimanual intensive training in children with unilateral cerebral palsy: a systematic review. Clin Rehabil. 2017;31(11):1445-56. Available from: https://doi.org/10.1177/0269215517698834. | Wrong population |
Tinderholt Myrhaug H, Ostensjo S, Larun L, Odgaard-Jensen J, Jahnsen R. Intensive training of motor function and functional skills among young children with cerebral palsy: a systematic review and meta-analysis. BMC Pediatr. 2014;14:292. Available from: https://doi.org/10.1186/s12887-014-0292-5. | Wrong population |
Tovar A, Gómez R. Systemic review on upper limb treatment in infantile hemiplegic cerebral palsy. Fisioterapia. 2012;34(4). | Wrong language |
Valentin-Gudiol M, Mattern-Baxter K, Girabent-Farres M, Bagur-Calafat C, Hadders-Algra M, Angulo-Barroso RM. Treadmill interventions in children under six years of age at risk of neuromotor delay. Cochrane Database Syst Rev. 2017;7(7):CD009242. Available from: https://doi.org/10.1002/14651858.CD009242.pub3. | Wrong population |
Verschuren O, Ketelaar M, Takken T, Helders PJ, Gorter JW. Exercise programs for children with cerebral palsy: a systematic review of the literature. Am J Phys Med Rehabil. 2008;87(5):404-17. Available from: https://doi.org/10.1097/PHM.0b013e31815b2675. | Wrong population |
Volpini M, Aquino M, Holanda AC, Emygdio E, Polese J. Clinical effects of assisted robotic gait training in walking distance, speed, and functionality are maintained over the long term in individuals with cerebral palsy: a systematic review and meta-analysis. Disabil Rehabil. 2022;44(19):5418-28. Available from: https://doi.org/10.1080/09638288.2021.1942242. | Wrong population |
Warnier N, Lambregts S, Port IV. Effect of Virtual Reality Therapy on Balance and Walking in Children with Cerebral Palsy: A Systematic Review. Dev Neurorehabil. 2020;23(8):502-18. Available from: https://doi.org/10.1080/17518423.2019.1683907. | Wrong population |
Willoughby KL, Dodd KJ, Shields N. A systematic review of the effectiveness of treadmill training for children with cerebral palsy. Disabil Rehabil. 2009;31(24):1971-9. Available from: https://doi.org/10.3109/09638280902874204. | Wrong population |
Xie CZ, Tang JK. Analysis of training techniques for the functional rehabilitation of cerebral palsy. Chinese Journal of Clinical Rehabilitation. 2006;10(24). | Wrong language |
Yang FA, Lee TH, Huang SW, Liou TH, Escorpizo R, Chen HC. Upper limb manual training for children with cerebral palsy: A systematic review and network meta-analysis of randomized controlled trials. Clin Rehabil. 2023;37(4):516-33. Available from: https://doi.org/10.1177/02692155221137698. | Wrong population |
Yang G, Su H, Yang M, Chang J. The Effect of Physical Exercise on Gross Motor Function in Children with Cerebral Palsy: A Meta-Analysis. International Journal of Human Movement and Sports Sciences. 2022;10(3):581-91. Available from: https://doi.org/10.13189/saj.2022.100327. | Wrong population |
Yardimci-Lokmanoglu BN, Bingol H, Mutlu A. The forgotten sixth sense in cerebral palsy: do we have enough evidence for proprioceptive treatment? Disabil Rehabil. 2020;42(25):3581-90. Available from: https://doi.org/10.1080/09638288.2019.1608321. | Wrong population |
Zai W, Xu N, Wu W, Wang Y, Wang R. Effect of task-oriented training on gross motor function, balance and activities of daily living in children with cerebral palsy: A systematic review and meta-analysis. Medicine (Baltimore). 2022;101(44):e31565. Available from: https://doi.org/10.1097/MD.0000000000031565. | Wrong population |
Zanon MA, Pacheco RL, Latorraca COC, Martimbianco ALC, Pachito DV, Riera R. Neurodevelopmental Treatment (Bobath) for Children With Cerebral Palsy: A Systematic Review. J Child Neurol. 2019;34(11):679-86. Available from: https://doi.org/10.1177/0883073819852237. | Wrong population |
Zhang Y, Li R, Miao X, Cheng LJ, Lau Y. Virtual motor training to improve the activities of daily living, hand grip, and gross motor function among children with cerebral palsy: Meta-regression analysis. Gait Posture. 2022;91:297-305. Available from: https://doi.org/10.1016/j.gaitpost.2021.10.046. | Wrong population |
Zhu D, Xiao N, The Subspecialty Group of Rehabilitation tSoPCMA. Interpretation of early intervention for children aged 0 to 2 years with or at high risk of cerebral palsy: international clinical practice guideline based on systematic reviews published by JAMA Pediatrics in 2021. Chinese Journal of Applied Clinical Pediatrics. 2021;36(19). Available from: https://doi.org/doi:10.3760/cma.j.cn101070-20210729-00904. | Wrong language |